प्रिय उम्मीदवारों,
संख्यात्मक अभियोग्यता एक कठिन खंड है. कई बैंक परीक्षाओं में दो स्तरीय परीक्षा होती है अर्थात प्राथमिक और मुख्य. उनमें से कई ने अपना परीक्षा प्रारूप बदल दिया है और प्रत्येक खंड के लिए 20 मिनट का अनुभाग समय दिया है. संख्यात्मक अभियोग्यता प्रत्येक परीक्षा के लिए महत्वपूर्ण है खंड है और इसके लिए प्रत्येक उम्मीदवार के पास एक बेहतर रणनीति होना आवश्यक है क्योंकि यह वह खंड है जो आपको पूरे अंक दिला सकता है. आप भले ही भाषा के खंड में प्रश्नों के उत्तर देते समय अटक सकते हैं लेकिन यह खंड आपको पूरे अंक दिलाने में सहायक हो सकता है.
तो इस खंड में आपकी सहायता करने के लिए Adda247 आपके लिए लेकर आया है संख्यात्मक अभियोग्यता के लिए कुछ ट्रिक्स जो परीक्षा के दौरान आपका समय बचा सकती हैं.
Some solved questions based on-
Concept 1– Multiplication by 11
Example 1-
24*11= 2_addition of (2+4) 4
hundred and ones digit is fixed, the tens digit is the sum of digits.
a) 2 always in hundred place
b) tens place- addition of digits
c) ones place- 4
Concept 2– Addition of interchange number
Addition of interchange number= 11*(addition of digits)
Example-
1) 26+62
Now addition of 26+62 be done
=11*(2+6)= 88.
Concept 3– Subtraction of Interchange Number
Subtraction of interchange Number= 9*( difference of digits)
Note – a sign of a number is according to
For 26-62= 9*(4)=-36 … the sign is according to sign with a bigger number.
Some Questions based on these rules-
Example1– A number consists of two digits. The sum of the digits is 9. If 63 is subtracted from the number, its digits are interchanged. Find the number?
Solution- Two digit number is 10x+y
given sum of digits(x+y)=9 –equ(1)
digits are interchanged as-
10x+y-63=10y+x—-equn(2)
basic method-solve equn (2)
9x-9y=63 or we can skip this equation if we know interchanging of number concept.
interchange Number= 9*( difference of digits).
now
x-y=7—equ(3)
solve equ 1 and 3
solve here
for x=9+7/2=8
for y=9-7/2=1
the required number is 10x+y=81
Example2-Qty1 and Qty 2
Qty1. A certain number of two digits is three times the sum of its digits and if 45 be added to it, the digits are reversed. The number is:
Solution- Given 10x+y=3(x+y)
7x-2y=0 OR x/y=2/7 equn1
10x+y+45= 10y+x
9(x-y)=45
x-y=5 equn2
solving equn 1 and 2
x=2 and y=7
the required number is 27.
Qty2– A two digit number is such that the product of the digits is 8. When 18 is added to the number, then the digits are reversed. The number is.
Solution-given xy=8 eun1
10x+y+18=10y+x
9x=9y-18 equn 2
solving equn 2
y-x=2, put y=2+x
x(2+x)=8
x^2+2x-8=0— equn3
solving quadratic equn3
when equation has (+,-) roots are in (- bigger root,+ smaller root)
so x=2 and -4
x=2, y=4
the number is 24.
Qty 1> Qty2
Example4– Combination of interchange number-
44+89-64+78+44-98+46-87
Rearrage numbers(44+89-64+78+44-98+46-87) and apply interchange concept of addition and subtraction.
11*8-9*(1+2+1) =88-36=52.
Concept4– Multiplication of a number that has 5 in unit place.
We Know multiplication of two number ending with 5 gives 25 always
Example- 65*35 {Here the difference between number is 30}
= 3*(6+1) for 1st part 25 comes after it + (6-3)*50
=2125+150=2275
Concept5– (a3+b3)= (a+b)*(a2-ab+b2)
(a3-b3)=(a-b)(a2+ b2+ab)
(a2-b2)= (a+b)(a-b)
Example1–68% of 720+41% of 390
1/10(68*72)+(41*39)
1/10(70-2)(70+2)+(40-1)(40+1)
(70^2-4)+(40^2-1)
(489.6+159.9)= 649.5
Example2- 30.6% of 2940
1/100(306*294)
1/100(300+6)(300-6)
=899.64.
You may also like to read-